Read here about biotensegrity, the field of research into biological forms of tensegrity

Overview


Biotensegrity is a label applied to the field of research into biological forms of tensegrity, with a focus on structural/mechanical expositions of biological forms and bioinformatic signalling that occurs on tensegrity-based tension networks.

To attempt and organize the diverse research agendas currently at work that can be labelled biotensegrity, this article is ordered by scale, from the micro to the macro. At the micro level, there are tensegrity explanations of Eukaryotic cell structure that are becoming mainstream. On the macro level, there are tensegrity explanations of the musculo-skeletal framework of animals.

Review of Biotensegrity


Swanson 2013 [5] published a review of biotensegrity research. He concluded that such research, since 1985, has demonstrated that the architectural principles of tensegrity can be applied to biological organisms (termed biotensegrity) and that these principles can demonstrate the mechanical structure-function relationship at all size scales in the human body. Further, biotensegrity at the cellular level allows the cell to mechanically sense its environment and convert mechanical signals into biochemical changes. When applied to the principles of osteopathic medicine, biotensegrity provides a conceptual understanding of the hierarchical organization of the human body and explains the body’s ability to adapt to change. Further, biotensegrity
explains how mechanical forces applied during osteopathic manipulative treatment could lead to effects at the cellular level, providing a platform for future research on the mechanisms of action of osteopathic manipulative treatment.

He divided the research into six topics: cellular, molecular, organ and tissue, organ system/organism, cellular mechanical signal transduction and related mechanopathology, and osteopathic fascial release concepts.

Biotensegrity Review



Topics in Biotensegrity


Molecular biotensegrity

Recent work shows that the DNA molecules can be formed into tensegrity-based stable structures. Rigid DNA Triangles with Flexible Four-Arm DNA Junctions by Liu, Wang, Deng, Walulu, Mao states, DNA “must be specified as multiples of half-turns, in order to avoid torsional stress in this system.” They find three double-stranded DNA helices in a plane, linked at four immobile crossover points. See Rigid DNA Triangles with Flexible Four-Arm DNA Junctions by Liu, Wang, Deng, Walulu, Mao.

See the work of Seeman on DNA.

Cellular biotensegrity

The tensegrity model of cellular cytoskeleton structure has entered cell biological mainstream thinking. For example, the cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures was found to be consistent with the tensegrity model [1].

Tensegrity is also a guiding principle in cellular mechanical signal transduction and related mechanopathology.

See Ingber, the founder and central researcher into this theory.

Organelle biotensegrity


In connective tissue, integrins are particular important in assessing the tensegrity structures of organelles.

Tissue biotensegrity


Tissue biotensegrity is usually discussed in the context of organ biotensegrity.

Organ biotensegrity


Myers in Anatomy Trains explicates the double bag structure of organs in terms of tensegrity. See Myers, Tom and Anatomy Trains.

Organism biotensegrity


This heading is a stub. See animals, or the portal to structural anatomy.

Social biotensegrity


Social networks are beginning to be explicated by tensegrity-centered concepts.

Some examples:

Francesco Cingolani et al speculate that tensegrity can explicate self organizing social networks. They wrote, "Information and Communication Technologies (ICTs)... can be used for completely different and contradictory purposes. On one side you can take advantage of its enormous data processing capacity to centralize all information and try to 'solve' the urban complexity, but they can also be used to open and decentralized decision making.... The presence of a centralized entity is not required when the control devices and return of information (feedback) allows the actors to see or realize the consequences of their actions. The phenomenon of unconscious self-organization becomes conscious and intentional control when it allows individuals to understand the effects of their actions. Here we can talk about the concept of tensegrity, when referring to a management model where decentralized decisions join centralized ones preventing a fully closed and omnipresent 'dynamic of control'. " [3]

Stefan Michal Wasilewski research at the University of Hull finds that, "Tensegrity and Team Syntegrity not only can model the dynamics within a system but also within recursive layers. Whilst TSI (Beyond Dispute, Beer, 1994) shows a way in which to interrogate the management of a business I believe it also offers (along with Tensegrity) a method to discern the ultimate stability of a network by categorising them based upon their degree of closed structure (Autopoietic Form) and communication dependencies within recursive structures. When reviewing Tensegrity structures it is hard for me not to see ‘black boxes’ (Beer, 1994) linked by communication chains." [4]

Biotensegrity Resources


Selected resources are listed.

Steven Levin's Biotensegrity Website


Steve Levin's Biotensegrity Website is the ideal reference. http://www.biotensegrity.com/ He writes, "Tensegrity icosahedrons are used to model biologic organisms from viruses to vertebrates, their cells, systems and subsystems. There are only tension and compression elements in tensegrity systems. There are no shears, bending moments or levers, just simple tension and compression, in a self organizing, hierarchical, load distributing, low energy consuming structure."

Links and References

[1] Cytoskeletal Organization Of Breast Carcinoma And Fibroblast Cells
[3] Urban Aperture(s): Porosity As A New Model For Hybrid Public Space by Francesco Cingolani, Domenico Di Siena, Manu Fernandez, Paco Gonzalez, Cesar Reyes Najera And Ethel Baraona Pohl, see http://www.dpr-barcelona.com.
[4] Stefan Michal Wasilewski Research Proposal, The University of Hull, Upgrade Report 2009 for Student No: 361429
[5] Journal American Osteopath. Assoc. 2013;113(1):34-52

Portal to Structural Anatomy
A series on the body's musculoskeletal structure
Anatomy:Animals, Bone, Lungs, Pelvis, Spine, Elbow
Concepts: Anatomy Trains, Biotensegrity, Birth, Mechanobiology, Movement Therapy
Tools: Clothing, Prosthetics
People: Earnhardt, Flemons, Guimberteau, Levin, Myers, Scarr

Portal to Cellular Biology
A series on cells and cytoskeletal structure
Biotensegrity, Blood cells, Cells, Biological, Cytoskeleton, DNA, integrins, Mechanobiology
People: Ingber